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ABSTRACT

The renormalization group(RG) functions for the critical dynamics at the λ-

transition in He3-He4 Mixtures (model F’) have been calculated in two loop order.

Comparison is made with the hydrodynamic transport coefficients as function of

concentration of He3. Although general improvement is achieved with respect to

an earlier calculation based on a combination of one loop and two loop terms

in the field theoretic functions, some deviations remain in the mass diffusion

coefficients. However the non universal initial values of the flow parameters take

values more compatible with the physical expectation.

As a corollary we obtain the field theoretic functions of model F describing

the critical dynamics of the supefluid transition in pure He4. Comparing with

experiments in pure He4 improves the background value of the imaginary part of

the time scale ratio between the order parameter and the energy.

KEY WORDS: critical dynamics; transport coefficients; superfluid transition;

renormalization-group theory;
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1. INTRODUCTION

Recently the field theoretic functions for the dynamical model (model F’)

that describes 3He-4He mixtures near the λ-transition have been calculated in

two loop order [1]. Together with the two loop values for the amplitudes of

the relevant vertex functions [2] the transport properties of these mixtures are

now known completely up to two loop order. So far the critical dynamics has

been treated [3, 4] in a combination of one and two loop terms. The terms with

the static couplings to the secondary densities of entropy and concentration were

taken in one loop order and all other dynamic terms (mode coupling terms) in two

loop order. This approximation was used for a comparison with the temperature

dependence of the three transport coefficients - thermal conductivity, thermal

diffusion ratio and mass diffusion. The interrelation between the three coefficients

allows a much better significant test of the theory. Apart from extrapolating the

temperature dependence of the transport coefficients one may predict one of the

three coefficients by fitting only the two other coefficients.

As a corollary of the field theoretic calculations, the field theoretic functions

of model F [5] describing the critical dynamics of pure 4He near the λ-transition

could be checked and it turned out that the results for these functions presented

in [5] differ from ours. We believe that our results are correct since the perturba-

tional expansion fulfill the relation found between the correlation and response

vertex function of the order parameter (OP) [1]. Moreover the field theoretic

functions of [5] do not reduce to the correct model C functions [6]. It is therefore

necessary to repeat the analysis of the thermal conductivity in order to find the
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non universal background values of the dynamical prameters. These may then be

used for predicting other dynamical properties, like first sound attenuation [7, 8].

2. MIXTURES OF HELIUM4 and HELIUM3

The dynamical model for 3He-4He mixtures has been introduced by Siggia

and Nelson [9]. It consists of three equations for the complex superfluid OP ψ

(n = 2), and two linear combinations mi of the entropy density and the concen-

tration (see Eqs (2.17), (2.18) of [3]). They read

∂ψ

∂t
= −2Γ

δH

δψ∗ + iψ
∑
i

gi
δH

δmi
+ Θψ

∂ψ∗

∂t
= −2Γ∗ δH

δψ+
− iψ∗∑

i

gi
δH

δmi

+ Θ∗
ψ

∂mi

∂t
= −�∇ �Ji + Θmi

i = 1, 2

with the currents

�J1 = −λ�∇ δH

δm1

− L�∇ δH

δm2

−2g1�(ψ∗�∇ψ)

�J2 = −L�∇ δH

δm1
− µ�∇ δH

δm2
− 2g2�(ψ∗�∇ψ)

The non conserved OP relaxes with the complex relaxation coefficient Γ = Γ′ +

iΓ′′, the kinetic coefficients λ, µ, and L correspond to thermal diffusion, mass

diffusion and the thermo diffusion mode. Non vanishing Poisson brackets lead to

reversible terms coupling the OP and the conserved densities with coefficients gi.

The stochastic forces Θi fulfill Einstein relations in order to reach the equilibrium

described by the functional

H =
∫
ddx

{
1

2
τ |ψ|2 +

1

2
|∇ψ|2 +

ũ

4!
|ψ|4 +

1

2
(m2

1 +m2
2) +

1

2
γ2m2|ψ|2

}
(1)
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where the static diagonalization and scaling of the densities has been performed.

Within the field theoretic renormalization group method one obtains by stan-

dard methods via the so called ζ-functions the flow equation of the dynamic pa-

rameters of the dynamic model. These parameters appear in the expressions for

the physical dynamical quantities calculated from vertex functions. One example

are the transport coefficients obtained in the hydrodynamic limit (kξ < 1) from

these vertex functions. The temperature dependence is determined by the flow

equations of the dynamical parameters via a matching condition which relates

the flow perameter to the correlation length ξ or the relative temperature dis-

tance t = (T − Tλ)/Tλ respectively. The initial values necessary to solve the flow

equations are the non universal quantities to be determined by comparison with

experiment. Their values may appear in other dynamical quantities which then

can be predicted.

The expression for the ζ-functions can be found in [1]. Inserting them into

the flow equations given in [3] (see Eqs (3.56) there) the two loop temperature

dependence of the dynamic parameters is known.

3. TRANSPORT COEFFICIENTS

The transport coefficients of He3-He4 mixtures have been calculated in one

loop order in [3]. The higher loop terms of the thermal conductivity in pure He4

can be used to find the hydrodynamic transport coefficients of the mixture in this

order. This feature results from the same coupling of all the conserved densities

to the OP in statics as well as in dynamics. Inserting into Eqs (3.49) of [3] the
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result of the two loop terms calculated in [2] we have the complete two loop result

at hand.

Figure 1: Temperature dependence (t = T/(T −Tc)) of the thermal conductivity

κ, the thermal diffusion ratio kT and the mass diffusion D in the mixture for

the molar concentration X=0.053 (solid curves: complete two loop result; dashed

curves: former incomplete theory; experimental data from [12, 13]). From a fit

of the first two coefficients the third is predicted.

The main quantity to be calculated are the derivatives of vertex functions
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Γ̂mim̃j
by the wave vector modulus squared

∂

∂k2
Γ̂m1m̃1 = λ

(
1 − f1f2

4
(1 − P ({wi}, {fi}))

)
(2)

∂

∂k2
Γ̂m1m̃2 =

√
λµ

(
w3 − f 2

1

4
(1 − P ({wi}, {fi}))

)
(3)

∂

∂k2
Γ̂m2m̃2 = µ

(
1 − f 2

2

4
(1 − P ({wi}, {fi}))

)
(4)

where the time scale ratios

w1 =
Γ

λ
, w2 =

Γ

µ
, w3 =

L√
λµ

, (5)

and the mode couplings

f1 =
g1√
Γ′λ

, f2 =
g2√
Γ′µ

(6)

The two loop perturbation contributions to the vertex functions are given by

P ({wi}, {fi}) and are related to the two loop contributions calculated in [2]. We

have taken these expressions from [2] and they turn out to be rather small also

in our case.

The comparison with experiment follows the same steps as explained in [4]

we only list the experimental quantities used in this comparison. We need:

• the correlation length ξ = ξ0t
−ν at a certain pressure and concentration

• the λ-line derivatives of the entropy S, the molar concentration X and the

difference of the chemical potentials of He4 and He3 ∆ [10]

(
∂S

∂T

)
P,λ

,

(
∂X

∂T

)
P,λ

,

(
∂∆

∂T

)
P,λ

(7)

• the specific heat CP,X [11]
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• the thermal conductivity κ at mass current zero, the mass difusion D and

the thermal diffusion ratio kT [12, 13]

An analysis of the experimental data has been repeated with the complete ex-

pressions known now. The λ-line derivatives have been taken from experiment

and the flow of the fourth order coupling u(�) and the coupling γ(�) have been ex-

tracted from the experimental temperature dependence of the specific heat CP,X ,

see [4].

Figure 2: Comparison of the flow found from fits to the data as described in Fig.

1. Solid curve: complete two loop flow; dashed curve: former incomplete theory).

In Fig. 1 we show the comparison of the former results with the those now

obtained for the lowest concentration (X = 0.053), fits for the other concentration

can be found in [1]. The overall picture is an improvement of the prediction of
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the third transport coefficient, the mass diffusion. However substantial deviations

remain. On the other hand the flows obtained from the complete and consistent

two loop result is much more in accordance with the physical expectation (see

Fig. 2). E.g. we expect the imaginary part w′′
2 of the time ratio w2 to be positive,

which now is almost the case. It turns out that the behavior of the flow in this

background region is very sensitive to the values of the experimental data within

this region. Especially the behavior of the small and uncertain values of the

thermal diffusion ratio kT is important, e.g if it changes sign already or not.

4. PURE HELIUM4

Reducing the result for model F’ by coupling only one conserved density to

the OP we obtain the ζ-function of the OP for model F describing pure He4

ζΓ = F2+
u2

9

(
L0 + x1L1 − 1

2

)
− 2

3
uFa− 1

2
F2b (8)

with the definitions F = C − iE , C =
√

w
1+w

γ and E = F√
w(1+w)

. The OP

relaxation Γ = Γ′ + iΓ′′ and the time ratio w = Γ/λ = w′ + iw′′ are complex, and

the mode coupling is defined by F = g/λ. Note that in a and b which are defined

as

a = C(1 − x1L1) + iEx−x1L1 −FL0 (9)

and

b = C2(1 − 2x1L1) + 2iCE(1 + x−x1L1) + (10)

E2

([
x+ + v + x2

+

(
x2

+ + 2v2
)] L1

x+

− 3v

)
− 2F2L0 − F2

1 + w

[
w + (1 + 2w)l(s)

]
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the couplings via C, E and F are contained. Further we have v = Γ
Γ∗ , x± = 1± v,

x1 = 2 + v and the logarithmic terms

L0 = 2 ln
2

1 + v−1
, L1 = ln

(1 + v−1)
2

1 + 2v−1
l(s) = ln

(1 + w)2

1 + 2w
(11)

For the ζ-function of the secondary density we get

ζλ = γ2 − F 2

2w′
(
1 +

1

2
�[Q]

)
(12)

with

Q =
w′

w
F
[
F
(

1

2
+ ln

1 + w

1 + w∗

)
+

√
w∗

w
F∗|1 + w| −

(
W

w
C + iwE

)
WL

]
(13)

and W = w + w∗ + ww∗, L = ln (1 +W−1).

The difference to Dohm’s result appear in the OP ζ function only

ζ
(Dohm)
Γ − ζΓ =

γ2D2x−
4w2x+(1 + w)

L0 − wγDF 2

w∗x+(1 + w)2

+
D

2(1 + w)2

[
ww∗ − w − w∗

(w∗)2x+

γ3 − 2
x−
w2
DF 2

]
L1 (14)

The difference goes to zero in the asymptotic limit but contributes substantially

in the physical accessible region to the flow.

The changes in the ζΓ-function effect the flow equations which govern the

non asymptotic temperature dependence of the transport coefficients.

We also have compared our results for the thermal conductivity λT (t) (which

is also obtained in the limit limX→0 κ(t, X) = λ(T ) in mixtures) with the exper-

imental data at saturated vapor pressure (SVP) in pure 4He, respective with the

effective amplitude Rλ = λT/
√
ξg2

0kBCP (see Fig. 2), with CP the temperature

dependent specific heat, g0 the unrenormalized mode coupling and kB the Boltz-

man constant. The background parameter for the renormalized imaginary part
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Figure 3: Fit and extrapolation (full curve) of the amplitude Rλ at SVP of the

thermal conductivity in the range 10−3 to 10−6 to the data of [14] and above 10−3

to the data of [15]. Dashed curve fitted and extrapolated with the flow of [5].

of the time ratio w found from a fit with the correct flow equations is now of the

expected size w′′ ≈ 0.3 instead of w′′
Dohm ≈ 0.8. In Ref. [16] the unrenormalized

value was shown to be approximately w′′
0 ≈ 0.21.

Similar fits have been performed for higher pressures (see Fig. 4). However

the imaginary part becomes smaller for higher pressures and reaches a value

slightly smaller than zero (w′′ = −0.055). Starting from the saturated vapor

pressure P0 = 0.05 bar one may fix the values of w′′ at a higher pressures P by

w′′
P = w′′

P0

Vλ(P0)CP (P )

Vλ(P )CP (P0)
(15)

according to the relation derived by Dohm [16] for the unrenormalized param-
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Figure 4: Fits (full curves) of the amplitude Rλ at different pressures. For com-

parison the asymptotic slope of the amplitude ratio is shown (dashed line), this

slope is due to the fact that the non scaling fixed point w� = 0 is the stable one.

eters. This leads to less agreement with the data at the higher pressures most

prominently at 28.0 bar.

Since in the two loop approximation the non scaling fixed point (w� = 0)

is the stable one, an asymptotic powerlaw Rλ ∼ t−ωcorr/ν with the correction to

scaling exponent ωcorr = 0.08 [5] is predicted. This is a much flatter increase

approaching Tλ than obtained in the extrapolation region 10−10 ≤ t ≤ 10−7.

Taking this into account it is surprising that the highest pressure data already

show an almost flat behavior, whereas our calculation shows a more pronounced

minimum for Rλ

5. CONCLUSION
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Dynamical critical effects near the superfluid phase transition can only be

compared within the non asymptotic renormalization theory in two loop order.

An extension of this analysis to first sound phenomena should follow in order

to get an overall picture of non asymptotic effects. On the experimental side it

would be desirable for pure He4 to have more thermal conductivity data near Tλ

at higher pressures especially for 28 bar in order to compare with the theoretical

prediction, which indicates a sharper minimum in the data and a steeper increase.

In general the two loop flow is more sensitive to the experimental data than the

flow of the former incomplete theory. E.g. in mixtures they depend strongly on

the background behavior of the thermo diffusion cofficient kT , which then has a

strong impact on the plateau value of the finite thermal conductivity κ.
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